إدخال مسألة...
الرياضيات المتناهية الأمثلة
خطوة 1
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 2
عيّن قيمة المتغير المستقل في بحيث تصبح أصغر من أو تساوي لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 3
خطوة 3.1
لحذف الجذر في الطرف الأيسر للمتباينة، ربّع كلا طرفي المتباينة.
خطوة 3.2
بسّط كل طرف من طرفي المتباينة.
خطوة 3.2.1
استخدِم لكتابة في صورة .
خطوة 3.2.2
بسّط الطرف الأيسر.
خطوة 3.2.2.1
بسّط .
خطوة 3.2.2.1.1
اضرب الأُسس في .
خطوة 3.2.2.1.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.2.2.1.1.2
ألغِ العامل المشترك لـ .
خطوة 3.2.2.1.1.2.1
ألغِ العامل المشترك.
خطوة 3.2.2.1.1.2.2
أعِد كتابة العبارة.
خطوة 3.2.2.1.2
بسّط.
خطوة 3.2.3
بسّط الطرف الأيمن.
خطوة 3.2.3.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 3.3
أوجِد قيمة .
خطوة 3.3.1
أضِف إلى كلا طرفي المتباينة.
خطوة 3.3.2
اقسِم كل حد في على وبسّط.
خطوة 3.3.2.1
اقسِم كل حد في على .
خطوة 3.3.2.2
بسّط الطرف الأيسر.
خطوة 3.3.2.2.1
ألغِ العامل المشترك لـ .
خطوة 3.3.2.2.1.1
ألغِ العامل المشترك.
خطوة 3.3.2.2.1.2
اقسِم على .
خطوة 3.4
أوجِد نطاق .
خطوة 3.4.1
عيّن قيمة المجذور في بحيث تصبح أكبر من أو تساوي لإيجاد الموضع الذي تكون فيه العبارة معرّفة.
خطوة 3.4.2
أوجِد قيمة .
خطوة 3.4.2.1
أضِف إلى كلا طرفي المتباينة.
خطوة 3.4.2.2
اقسِم كل حد في على وبسّط.
خطوة 3.4.2.2.1
اقسِم كل حد في على .
خطوة 3.4.2.2.2
بسّط الطرف الأيسر.
خطوة 3.4.2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 3.4.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 3.4.2.2.2.1.2
اقسِم على .
خطوة 3.4.3
النطاق هو جميع قيم التي تجعل العبارة معرّفة.
خطوة 3.5
استخدِم كل جذر من الجذور لإنشاء فترات اختبار.
خطوة 3.6
اختر قيمة اختبار من كل فترة وعوض بهذه القيمة في المتباينة الأصلية لتحدد أي الفترات تستوفي المتباينة.
خطوة 3.6.1
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
خطوة 3.6.1.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 3.6.1.2
استبدِل بـ في المتباينة الأصلية.
خطوة 3.6.1.3
الطرف الأيسر لا يساوي الطرف الأيمن، ما يعني أن العبارة المُعطاة خطأ.
False
False
خطوة 3.6.2
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
خطوة 3.6.2.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 3.6.2.2
استبدِل بـ في المتباينة الأصلية.
خطوة 3.6.2.3
الطرف الأيسر أكبر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة خطأ.
False
False
خطوة 3.6.3
قارن بين الفترات لتحدد أيًا منها يستوفي المتباينة الأصلية.
خطأ
خطأ
خطأ
خطأ
خطوة 3.7
بما أنه لا توجد أي أعداد واقعة ضمن الفترة، إذن لا يوجد حل لهذه المتباينة.
لا يوجد حل
لا يوجد حل
خطوة 4
عيّن قيمة المتغير المستقل في بحيث تصبح أصغر من أو تساوي لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 5
خطوة 5.1
أوجِد جميع القيم التي تتحول فيها العبارة من سالبة إلى موجبة بتعيين قيمة كل عامل لتصبح مساوية لـ وحلّها.
خطوة 5.2
أوجِد نطاق .
خطوة 5.2.1
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 5.2.2
النطاق هو جميع قيم التي تجعل العبارة معرّفة.
خطوة 5.3
يتكون الحل من جميع الفترات الصحيحة.
خطوة 6
عيّن قيمة المجذور في بحيث تصبح أصغر من لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 7
خطوة 7.1
أضِف إلى كلا طرفي المتباينة.
خطوة 7.2
اقسِم كل حد في على وبسّط.
خطوة 7.2.1
اقسِم كل حد في على .
خطوة 7.2.2
بسّط الطرف الأيسر.
خطوة 7.2.2.1
ألغِ العامل المشترك لـ .
خطوة 7.2.2.1.1
ألغِ العامل المشترك.
خطوة 7.2.2.1.2
اقسِم على .
خطوة 8
تصبح المعادلة غير معرّفة عندما يكون القاسم مساويًا لـ ، أو عندما يكون المتغير المستقل للجذر التربيعي أصغر من ، أو عندما يكون المتغير المستقل للوغاريتم أصغر من أو يساوي .
خطوة 9